
3. DIFFERENTIATION

POTENTIAL OF SMALL CELLS

3.1 Introduction

3.1.1 Differentiation potential of stem cells

One of definitions of stem cells is multidifferentiation potential. Also the degree of

their stemness is determined by their differentiation potential. According to results

of section 2, sphere forming cells expressed pluripotent cell markers. Therefore in

this section, we aimed to confirm their differentiation potential in \dvo and in vitro.

3.2 Experimental

3.2.1/77 Differentiation Assays.

In \itro differentiation assays were examined following the published

differentiation culture conditions for murin ES cells.

Mesoderm lineage differentiation assay. Dissociated muscle cells were stained

with anti-asmooth muscle actin antibody, anti-Myosin antibody and anti-Desmin

antibody. Chondrocj^es were stained with Safranin-0 and Fast Green. Osteocytes
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were stained with ALIZARIN RED S, After 21 days, adipocytes were stained with

Oil Red 0.

Ectoderm lineage (Neural lineage) differentiation assay. Cells were plated on

ortinin-coated chamber slides and incubated with anti-pIII Tubuin mouse

monoclonal, anti-04 mouse monoclonal antibody and anti-GFAP mouse monoclonal

antibody.

Endoderm lineage (Hepatic) differentiation assay. Differentiated cells were

detected by immunohistochemistory using anti-a-fetoprotein mouse monoclonal

antibody, anti*Albumin goat polyclonal antibody and anti-Cytokeratin 18 mouse

monoclonal antibody. Results from immunohistochemistry were confirmed by

RT-PCR.

3.2.2 In Vivo Differentiation.

Spheres were seeded onto biodegradable scaffolds and implanted into subcutaneous

of NOD/SCID mice (Charles River laboratories). After 6 weeks, the implants were

harvested and fixed with 10% formaldehyde, then examined by

immunocytochemistry.

3.3Results

3.3.1 Differentiation potential of cells in vitro
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When representative bone marrow derived spheres were dissociated into single cells

and exposed to three different differentiation media, the cells differentiated to

express specific genes of the three lineages, Map2 (ectoderm), MyoD (mesoderm)

and alpha-fetoprotein (AFP, endoderm) (Fig. 10).The addition of a neural

differentiation medium to the in vitro environment of cells from bone marrow

spheres, resulted in expression of pIII tubulin (a marker for neuron) (Fig. 11).

Alternatively, the addition of 20% fetal calf serum to the media resulted in the

expression of markers representative of mesoderm; that is, a-smooth muscle actin

(Fig. 11) as well as the mesenchymal cells, chondrocytes, osteocytes and adipocytes

(Fig. 12). Thus, cells from spheres differentiated into all cell types of neural

(neurons, oligodendrocytes and ghas) and mesenchymal stem cell lineage

(chondrocytes, osteocytes and adipocytes). When exposed to a hepatocyte

differentiation media the expression of a-fetoprotein (Fig. 11), was seen, suggestive

of differentiation into endodermal tissue.

3.3.2 Differentiation potential in vivo.

Bone marrow spheres and ES cells were transplanted subcutaneously into immune

deficient mice to examine their tumor-initiating capacity. As a result, after 6 weeks

ES cells formed a tumor. Spheres did not form tumor as big as ES cells did. We

concluded that the proliferative potential of sphere cells was much weaker than

that of ES cells (Fig. 13).

Next, we investigated if transplanted cells differentiated in vivo after

transplantation. Transplanted cells were harvested after 6 weeks, and processed for
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immunohistochemical analyses. According to results of immunohistochemical

analyses, spheres differentiated into tissues derived from three germ layers in \nvo

(Fig. 14).

3.4 Summary of section 3

♦ Spheres differentiated into cells derived from all three

germ layers in vivo and in vitro

3.5 Discussion

Spheres differentiated into cells derived from three germ layers in vitro. It is yet

answered that it was either differentiation or trans-differentiation. Also it is hard to

refer the difference from in vitro differentiation potential of mesenchymal stem cells.

However, at least sphere forming cells enabled to generate various mature cells. In

addition, in vivo differentiation assay proved that sphere forming cells were indeed

stem cells, but distinct from ES cells in proriferative potential. The relationship

between proliferative potential and differentiation potential has yet been

understood. Spheres in this study showed differentiation potential which fulfill the

critereia for both mesenchymal stem cells and neural stem cells. We believe that the

spheres studied contain precursor cells to both mesenchymal and neural stem cells

Uneages.
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It is important to note that cells described above, were propagated as non-adherent

spheres, and are not known to exist in vivo. The in raYro behavior ofcells contained

in the spheres is liliely to be very different from cells that reside in vivo. How

these stem cells harbor in adult body and how they exert their potential

The spheres generated seemed to be composed ofheterogenous populations ofcells,

with some markers expressed in some spheres, and other markers expressed in

different spheres generated from cells isolated from the same tissue, at the same

time. We believe that these differences also may be a function of the environment in

which the cells were maintained.
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Figure 10 in differentiation of bone marrow spheres

After 6 weeks of culture, cells change their figurations into those of cells

representative of three germ layers.
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Figure 11 In vitrodifferentiation assayof cells from 3 germ layers.

Marrowspheres weredissociated and plated in each appropriate medium. Cells from spheres,

differentiated into cells representative of the three germ layers. Neural cells (left), muscle cells

(middle) cells, hepatocytes (right). Neurons stained with plll tubuline (left),. Muscle cells

stained with a-smooth muscle actin (middle). Hepatocytes were stained with a-fetoprotein

(right).
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Figure 12 Mesenchymal lineage differentiation.

Dissociated spheres were plated into serum-containing medium and cultured for

14*21 days. Plated cells differentiated into mesenchymal lineage cells even plated

cells were from spheres derived from endoderm or ectoderm tissues.

Marrow spheres differentiated into condrocytes (A), adipocytes (B) and osteocytes

(C). Pnemospheres differentiated into condrocytes (D), adipocytes (E) and osteocytes

(F). Spinalspheres differentiated into condrocytes (G) and adipocytes (H).
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Figure 13 Teratoma forming assay

10 bone marrow cells and ES cells were injected subcutaneously into immunedificienl mice.

After 6 weeks of implantation, cell masses were harvested.
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a-smooth muscle^actin •fetoprotein

Figure 14 Teratoma like mass from bone marrow spheres contained nerve expressing

betalll-tubiiline (left)(ectoderm), muscle expressing desmin (middle)(mesoderm) and

duct like structure expressing AFP (right)(endoderm).
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